Analysis and Design of Convolutional Networks via Hierarchical Tensor Decompositions
نویسندگان
چکیده
The driving force behind convolutional networks – the most successful deep learning architecture to date, is their expressive power. Despite its wide acceptance and vast empirical evidence, formal analyses supporting this belief are scarce. The primary notions for formally reasoning about expressiveness are efficiency and inductive bias. Expressive efficiency refers to the ability of a network architecture to realize functions that require an alternative architecture to be much larger. Inductive bias refers to the prioritization of some functions over others given prior knowledge regarding a task at hand. In this paper we overview a series of works written by the authors, that through an equivalence to hierarchical tensor decompositions, analyze the expressive efficiency and inductive bias of various convolutional network architectural features (depth, width, strides and more). The results presented shed light on the demonstrated effectiveness of convolutional networks, and in addition, provide new tools for network design. 1
منابع مشابه
Expressive power of recurrent neural networks
Deep neural networks are surprisingly efficient at solving practical tasks, but the theory behind this phenomenon is only starting to catch up with the practice. Numerous works show that depth is the key to this efficiency. A certain class of deep convolutional networks – namely those that correspond to the Hierarchical Tucker (HT) tensor decomposition – has been proven to have exponentially hi...
متن کاملXpressive Power of Recurrent Neural Net - Works
Deep neural networks are surprisingly efficient at solving practical tasks, but the theory behind this phenomenon is only starting to catch up with the practice. Numerous works show that depth is the key to this efficiency. A certain class of deep convolutional networks – namely those that correspond to the Hierarchical Tucker (HT) tensor decomposition – has been proven to have exponentially hi...
متن کاملTensor-Dictionary Learning with Deep Kruskal-Factor Analysis
A multi-way factor analysis model is introduced for tensor-variate data of any order. Each data item is represented as a (sparse) sum of Kruskal decompositions, a Kruskalfactor analysis (KFA). KFA is nonparametric and can infer both the tensor-rank of each dictionary atom and the number of dictionary atoms. The model is adapted for online learning, which allows dictionary learning on large data...
متن کاملConvolutional Rectifier Networks as Generalized Tensor Decompositions
Convolutional rectifier networks, i.e. convolutional neural networks with rectified linear activation and max or average pooling, are the cornerstone of modern deep learning. However, despite their wide use and success, our theoretical understanding of the expressive properties that drive these networks is partial at best. On other hand, we have a much firmer grasp of these issues in the world ...
متن کاملBoosting Dilated Convolutional Networks with Mixed Tensor Decompositions
Expressive efficiency is a concept that allows formally reasoning about the representational capacity of deep network architectures. A network architecture is expressively efficient with respect to an alternative architecture if the latter must grow super-linearly in order to represent functions realized by the former. A well-known example is the exponential expressive efficiency of depth, name...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1705.02302 شماره
صفحات -
تاریخ انتشار 2017